如何实现高效的 URL 过滤算法

在上一篇文章《那么,屏蔽词系统到底该怎么做?》中,我简单讲了一下屏蔽词系统的实现思路。这篇就讲一讲另一个类似的话题,那就是如何实现高效的 URL 过滤算法。

通过某些字面特征,筛选出符合条件的 URL,对其执行特定的操作。虽然看起来像是很遥远专业的技术,但其实早就根植在你手机里的各类浏览器相关 app,以及你使用的各类互联网服务中了。举一个最简单的例子:你在微信里打开淘宝链接,背后就是一个 URL 过滤算法的实现。

还有,很多浏览器 APP 设置项里有一个开关,叫做“广告过滤”,其中很大一部分也是通过 URL 过滤实现的。那如何做到高效的 URL 过滤呢

如果拿这个问题来面试,大概率候选人会回答用正则表达式实现。其实这一点不令人惊讶,因为我曾经亲眼见过一个日活惊人的 APP 也是用正则表达式做的(真不敢相信自己的眼睛)。用正则表达式本身来实现 URL 匹配不是很大的问题,但在“广告过滤”这样的场合,意味着有成千上万的 URL 规则,很难有人能用这些规则写出来高效的正则表达式

关于这点,展开说一下。理论上来讲,把所有 URL 规则融合到一条正则表达式里,也不是不可能。比如:"http[s]{0,1}://..{0,1}(taobao|tmall).com/.",可以融合两条淘宝和天猫的 url 规则。但如果让你融合一千个不同的 url 规则到一条正则表达式里,我想很难有人有信心把它完全做对,更不敢保证后续维护这个规则库的人能做对。所以很多情况下,他们只是用几千个正则表达式实现了几千条 url 规则,想想这个匹配效率有多低!!

所以,真正在乎 URL 匹配效率的人,不会使用正则表达式。举个最典型的例子,Adblock Plus 的过滤规则(https://adblockplus.org/filters),是完全自定义了一套匹配规则。不过,Adblock Plus 在早期也是用正则表达式,而且完全就是我上面讲的那种用法,不过后来他们改进了,还专门发了篇博客(https://adblockplus.org/blog/investigating-filter-matching-algorithms , 注意里面也用到了我上篇文章提到到 Rabin-Karp )。

可是在我看来,Adblock Plus 的实现只是够用,却还不够高效。我上一篇文章提到的 Trie 树,更合适做这种事情,可能也更高效(未比较),至少更简洁。Adblock 最核心的地方,是 URL 匹配。从 Adblock Plus 定义的规则也能看出,URL 匹配其实比正则表达式匹配简单很多,无非是在普通字符串匹配之上加了一些通配符而已。

那以 Adblock Plus 的通配符为例,我来讲一下如何用 Trie 树来实现含通配符的字符串匹配

  • "*" 通配符匹配任意长的字符串
    • 包含匹配时模式串前后的 "*" 没有意义,可以直接丢掉;
    • 以中间的 "*" 做划分,原串 * 位置后面的部分进行递归子树匹配;
  • "|" 匹配网址开头结尾:对 url 预处理,扔掉 scheme 部分 "http://",头尾都加上 "|",这样自然就能匹配上模式串中的 "|" 了。
  • "^" 标记分隔符:这就更简单了,遇到 ^ 规则时,不是比较原串中字符是否与其相等,而是是否包含在某个符号表中即可。

在这些匹配规则的基础上,结合 Double Array Trie 数据结构,可以实现一个内存占用超级小但效率又非常高的 URL 过滤器了。而且 Trie 树的结构对规则的条数非常不敏感,耗时并不会随着过滤规则的增多而显著增加。

不过还得多说一句,算法是效率核心,但真正解决问题还得花很多心思在算法外。比如例外规则,规则库的动态更新等等,这里就不继续展开了。

以上只是本人的一点拙见,对 Adblock Plus 的评论也没有评测数据验证,只是希望对读者能够有些用处。此外,也欢迎大家用更好的算法来打脸

那么,屏蔽词系统到底该怎么做?

caoz 在最近一篇公众号文章《企业面试需要几轮》中提到一个面试问题:

大家都知道做互联网有很多屏蔽词要处理,那么需要对用户发布的内容,做屏蔽词过滤,先不考虑一些正则组合的情况,假设我有一个屏蔽词库,里面有几万条屏蔽词信息,然后我有个非常火爆的社区,每天用户产生海量内容,比如上百万篇文章或评论,现在我要求每篇文章都能快速通过屏蔽词库去检索,而且要求服务器可以支撑尽可能多的处理请求,毕竟这是成本啊。那么请设计一个屏蔽词过滤的算法逻辑。

碰巧我在面试中也喜欢问这个问题,可惜的是能答上来的的确不多。

单单从算法层面论,大概有 50% 的人能回答出来逐个进行 KMP 匹配(另外 50% 不知道什么是 KMP)。让他更进一步优化的话,20% 的人能想到一些粗糙的优化技巧,10% 的人能说出前缀树匹配。大部分能答出前缀树匹配的人会提到 AC 自动机,但只有一半能大概答出 AC 自动机的大概算法。到目前为止,还没有人回答过其它算法,比如 Rabin-Karp 或者 Commentz-Walter。

即使在算法层面上能回答出来 AC 自动机,在实现上候选人也只能形象地描述一下 Trie 树和失败指针,Trie 树的每一层使用一个 Set 或者哈希表数据结构。到目前为止,还没有人回答过用 Double Array 来实现 Trie,甚至连用前缀做 key 的一个大哈希表来模拟 Trie 树的优化也没有。虽然构造 Double Array Trie 的代价非常高,但内存占用非常小,检索效率也很高,特别适用于屏蔽词的场合。离线建好 Double Array Trie,推送到线上仅仅需要读入两个内存块就能完成更新,加载过程到了极简。

哪怕是回答出了高效的算法和实现,离一个真正有效的屏蔽词系统还相差很远。首先要清楚一件事,道高一尺,魔高一丈。你平时想过什么办法绕过屏蔽词系统,现在就得想办法对抗你曾经开过的脑洞。下面举几个最常见的例子:

  1. 简繁体混用,大小写混用,全半角混用。首先得做归一化,繁体转简体,大写转小写,全角转半角。
  2. 在屏蔽词中间加特殊字符。原串先过一遍,去掉特殊字符再过一遍。
  3. 字形相近,读音相似。积累相近字典,替换为常用字再过一遍,将所有的字转为拼音再过一遍。
  4. 同义词替换。加屏蔽词时考虑替换场景,或者挖掘替换词库用来替代。

上面这几种方法,说起来简单,做起来都是坑。一不小心,就把正常的内容当成包含屏蔽词干掉了。这就是为啥大家老吐槽在某些网站发帖,动不动就被屏蔽,关键就在于坏招太多,规则多了就有误伤啊!所以一个优秀的屏蔽词系统,还得尽量避免误伤情况,也有一些办法。

  • 先切词,如果命中屏蔽词的范围不在切词的边缘,应该是误伤。最简单的例子是:24口交换机。
  • 添加屏蔽词的例外规则,比如“成人牙刷”需要是“成人”的例外规则。

最近几年机器学习特别火,其实机器学习也特别适合这种场景,就是一个二分类问题嘛。只是超出了简单算法的范畴,这里就不展开了。

所以你看,就一个“屏蔽词过滤的算法逻辑”,就有那么多要探讨的东西。而且以目前国内大部分互联网产品的实现上来看,可能考虑的还没我这篇文章全面。这可真不是一个能轻松就回答完美的问题。

Fastbit中的bitmap索引算法

摘要:bitmap 索引是一种典型的数据库索引方案,本文基于 Fastbit 软件包,使用实际用例对一些常用的 bitmap 索引算法进行了一个较为系统的介绍。

一、Fastbit是什么?

引用 Fastbit 的官方网站上的介绍:Fastbit是一个追随 NoSQL(Not Only SQL) 运动精神的开源的数据处理程序库,它提供了一系列的用压缩的 bitmap 索引支持的查询函数。在这里,我们关注的关键词是“bitmap 索引”。Fastbit 使用的是按列存储方式,其 bitmap 索引也是在按列存储的数据上建立起来的。

二、Fastbit 中的 bitmap 索引算法

Fastbit 的源代码有着非常清晰的结构。在 Fastbit 的源代码中,每个索引算法都用一个 C++ 类来实现,所有的索引算法类都是基类 index 的派生,并且在 fastbit 源代码中保存为以 i 开头的源文件。

下面是 Fastbit 中的索引类的派生关系图,从美观考虑,直接使用 xmind 思维导图而不是 UML 来展现了:

fastbit 索引算法派生关系图

下面我们将对其中部分算法进行简单的介绍。我们将这些索引算法分为几大类:基础算法、扩展算法、多层算法和多成分算法。

三、基础 bitmap 索引算法

基础的 bitmap 索引算法是最简单的 bitmap 索引算法,给出了 bitmap 索引的基本原理。

3.1 relic

relic (定义在 irelic.h 中,实现在 irelic.cpp ) 是最原始的 equality-encoded 算法,这个单词代表“遗迹”的意思。它可谓是最简单直观的 bitmap 索引算法。relic 为需要索引的每个值都建立一个 bitvector,在该 bitvector 中,只有等于该值的列才会被置 1,其它位都被置 0,如下表所示:

数据 索引(bitmap)
a b d e g
a 1 0 0 0 0
g 0 0 0 0 1
d 0 0 1 0 0
e 0 0 0 1 0
b 0 1 0 0 0
d 0 0 1 0 0
g 0 0 0 0 1
e 0 0 0 1 0
3.2 bin

bin (定义于 ibin.h,实现在 ibin.cpp)是 binned equality-encoded 算法,这里它代表“桶”的意思。它可以视为是 relic 的一种变形,它将值域分为几个不相交的区间,将原本是相等才置一的规则转变为值落在该区间内就置一,如下表所示。当然,relic 也可以视为 bin 的一个特例(将区间定义为 [a, a+ε)。bin 每个区间的范围由程序遵从某些规则设定,这些规则由命令行通过参数传入。

数据 索引(bitmap)
(…,b) [b,e) [e,…)
a 1 0 0
g 0 0 1
d 0 1 0
e 0 0 1
b 0 1 0
d 0 1 0
g 0 0 1
e 0 0 1
3.3 bin->range

range (定义于 ibin.h,实现于 irange.cpp)是 range-encoded 算法,这里它代表“范围”的意思。正如它字面所表达的意思,range 的每个 bitvector 标记着小于某边界值的值,如下表所示。因此,它可以视为是 bin 的一个累积表示,这也是 fastbit 软件包中所做的:首先构造 bin,然后累加转换成 range。值得注意的是,一般最后一列代表着小于无穷大,因此该 bitvector 全为 1,会被略去不写。

数据 索引(bitmap)
(…,b) (…,e) (…,g)
a 1 1 1
g 0 0 0
d 0 1 1
e 0 0 1
b 0 1 1
d 0 1 1
g 0 0 0
e 0 0 1
3.4 bin->mesa

mesa (定义于 ibin.h,实现于 imesa.cpp)是 interval-encoded 算法[1],它与 bin 类似,只不过它的区间之间有重叠部分。与 range 相同,在 fastbit 软件包中,它也是通过 bin 构造起来的。

数据 索引(bitmap)
(…,d) [a,e) [b,g) [d,…)
a 1 1 0 0
g 0 0 0 1
d 0 1 1 1
e 0 0 1 1
b 1 1 1 0
d 0 1 1 1
g 0 0 0 1
e 0 0 1 1

四、扩展 bitmap 索引算法

4.1 direkte

direkte (定义于 idirekte.h,实现于 idirekte.cpp)是丹麦语中的 direct,它与 relic 几乎是一样的,不同点只是它为小于最大值的所有值都建立了一个 bitvector(即使该值并不存在于列中)。

数据 索引(bitmap)
a b c d e f g
a 1 0 0 0 0 0 0
g 0 0 0 0 0 0 1
d 0 0 0 1 0 0 0
e 0 0 0 0 1 0 0
b 0 1 0 0 0 0 0
d 0 0 0 1 0 0 0
g 0 0 0 0 0 0 1
e 0 0 0 0 1 0 0
4.2 relic->slice

slice(定义于 irelic.h,实现于 islice.cpp)实现了 O'Neil'97 [2] 提出的 bit-slice 算法。它的基本思想就是首先将原始数据用二进制进行编码,bitmap 就是所有值的二进制编码表示的集合,bitvector 的个数由最大值的二进制表示决定,如下表所示:

数据 编码 索引(bitmap)
a 0 0 0 0
g 4 1 0 0
d 2 0 1 0
e 3 0 1 1
b 1 0 0 1
d 2 0 1 0
g 4 1 0 0
e 3 0 1 1
4.3 bin->bak

bak (定义于 ibin.h,实现于 idbak.cpp)是丹麦语中的 bin,因此它是 bin 的变形。它使用减精度来表示 bin 区间的中心,即它的每一个区间都是用一个更低精度的数来表示,具体来说就是四舍五入啦。下面是一个对 1-100 的数据列建立 bak 索引的输出,其中第一列表示区间的中心,第二三列代表区间最小最大值,第四列代表该区间内数据的个数:

index (equality encoding on reduced precision values) for data.a contains 19 bitvectors for 100 objects
1   1   1   1
2   2   2   1
3   3   3   1
4   4   4   1
5   5   5   1
6   6   6   1
7   7   7   1
8   8   8   1
9   9   9   1
10  10  14  5
20  15  24  10
30  25  34  10
40  35  44  10
50  45  54  10
60  55  65  11
70  66  74  9
80  75  84  10
90  85  94  10
100 95  100 6
4.4 bin->bak2

bak2 (定义于 ibin.h,实现于 idbak2.cpp)是 bak 的变形,也是以减精度来表示区间。但与 bak 不同的是,它将 bak 的每个区间区分为两个区间:小于减精度数的区间,和大于等于减精度数的区间。虽然注释中这样说,但实现时 bak2 是将 bak 的区间分为了三个:小于、等于和大于。下面是一个对 1-100 的数据列建立 bak2 索引的输出,每列的含义与 bak 中示例相同:

index (equality encoding on reduced precision values) for data.a contains 37 bitvectors for 100 objects
1   1   1   1
2   2   2   1
3   3   3   1
4   4   4   1
5   5   5   1
6   6   6   1
7   7   7   1
8   8   8   1
9   9   9   1
10  10  10  1   
10  11  14  4   
15  15  19  5
20  20  20  1
20  21  24  4
25  25  29  5
30  30  30  1
30  31  34  4
35  35  39  5
40  40  40  1
40  41  44  4
45  45  49  5
50  50  50  1
50  51  54  4
55  55  59  5
60  60  60  1
60  61  65  5
66  66  69  4
70  70  70  1
70  71  74  4
75  75  79  5
80  80  80  1
80  81  84  4
85  85  89  5
90  90  90  1
90  91  94  4
95  95  99  5
100 100 100 1

除了上面几个算法之外,扩展的算法还有 roster 和 keywords,这两种算法比较复杂,这里就不示例讲解了。

五、多层 bitmap 索引算法

有了几个基础的 bitmap 索引算法,我们就可以考虑将这些算法组合成一个层次的结构,构造出多层的 bitmap 索引算法。下面的几个算法,即是由前面的基础 bitmap 索引算法构造出来的二(多)层 bitmap 索引算法。

5.1 bin->ambit

ambit(定义于 ibin.h,实现于 ixambit.cpp)是 multilevel-range based算法,在这个算法中索引分为多层,每层索引都是基于 range 的索引。具体实现时,fastbit 首先构造 bin,然后对桶进行分组(调用 bin::divideBitmaps),然后构造 ambit。分组粒度可以由命令行传入参数 ncoarse=x 和/或 nrefine=n 指定,否则由一简单算法确定,确定分组个数的算法为(第一个桶不参与分组):

ixambit.cpp:
33     // the default number of coarse bins is determined based on a set
34     // of simplified assumptions about expected sizes of range encoded
35     // bitmaps and word size being 32 bits.
36     const uint32_t defaultJ = static_cast
37         (nbins < 100 ? sqrt((double)nbins) :
38          0.5*(31.0 + sqrt(31.0*(31 + 4.0*nbins))));

下面看一个实际的例子,左侧是对 1-100 的数据列构造的 bin,右侧是基于该 bin 构造的 ambit:

ambit 索引

5.2 bin->pale

pale(定义于 ibin.h,实现于 ixpale.cpp)是 two-level binned equality-range算法,它的索引分为两层,第一层为 binned equality(bin) 索引,第二层为 range 索引。在具体实现时,pale 首先构造 bin,然后对桶进行分组(调用 bin::divideBitmaps),然后构造 pale。与 ambit 相同,分组粒度可以由命令行传入参数 ncoarse=x 和/或 nrefine=n 指定,否则当 bin 桶数大于31时,默认第一层为16个组:

ixpale.cpp:
45     else { // default -- 16 coarse bins
46         if (nbins > 31) {
47         j = 16;
48         }
49         else {
50         j = nbins;
51         }
52     }

下面看一个实际的例子,左侧是对 1-100 的数据列构造的 bin,右侧是基于该 bin 构造的 pale:

pale 索引

5.3 bin->pack

pack(定义于 ibin.h,实现于 ixpack.cpp)是 two-level binned range-equality 算法。它的索引分两层,与 pale 相反,第一层为 range 索引,第二层为 binned equality(bin) 索引。具体实现时,fastbit 首先构造 bin,然后对桶进行分组(调用bin::divideBitmaps),然后构造 pack。分组粒度可以由命令行传入参数 ncoarse=x 和/或 nrefine=n 指定,否则当bin桶数大于63时,默认第一层为31个组:

ixpack.cpp:
44     else { // default -- 31 coarse bins
45         if (nbins > 63) {
46         j = 31;
47         }
48         else {
49         j = nbins;
50         }
51     }

下面看一个实际的例子,左侧是对 1-100 的数据列构造的 bin,右侧是基于该 bin 构造的 pack:

pack 索引

5.4 bin->zone

zone(定义于 ibin.h,实现于 ixzone.cpp)是 two-level binned equality-equality 算法,它的索引分两层,两层均为 binned equality(bin) 索引。它的实现方式也是首先构造 bin,然后对桶进行分组(调用 bin::divideBitmaps),然后构造 zone。其分组粒度可以由命令行传入参数 ncoarse=x 和/或 nrefine=n 指定,否则当bin桶数大于31时,默认第一层为14个组:

ixpack.cpp:
46     else { // default -- 14 coarse bins
47         if (nbins > 31) {
48         j = 14;
49         }
50         else {
51         j = nbins;
52         }
53     }

下面看一个实际的例子,左侧是对 1-100 的数据列构造的 bin,右侧是基于该 bin 构造的 zone:

zone 索引

5.5 bin->fuge

fuge(定义于 ibin.h,实现于 ixfuge.cpp)是 two-level binned interval-equality 算法,fuge 为德语中 interstice 的表述。fuge 的索引分两层,第一层为 interval(mesa) 索引,第二层为 binned equality(bin) 索引,它也是采用首先构造 bin,然后基于 bin 构造 fuge 的方式。其分组粒度由 ncoarse=x 指定,否则默认的分组个数由下面算法确定:

ixfuge.cpp:
887     // default size based on the size of fine level index sf: sf(w-1)/N/sqrt(2)
...
899     if (ncoarse < 5U && offset32.back() >
900     offset32[0]+static_cast(nrows/31)) {
901     ncoarse = sizeof(ibis::bitvector::word_t);
...
913     else {
914         ncoarse = ncmax;
915     }
916     }

下面看一个实际的例子,左侧是对 1-100 的数据列构造的 bin,右侧是基于该 bin 构造的 fuge:

fuge 索引

5.6 relic->bylt

bylt(定义于 irelic.h,实现于 ixrelic.cpp)是 two-level unbinned range-equality 算法,bylt 是丹麦语的 pack(binned 版本算法)。bylt 索引分两层,第一层为 range 索引,第二层为 unbinned equality(relic) 索引。在实现时首先构造 relic,然后对桶进行分组(调用bin::divideBitmaps),然后构造 bylt。分组粒度可以由 ncoarse=x 指定,bylt 保证每组中桶数是大致均匀的,否则由下面算法决定分组的个数:

ixbylt.cpp:
182     // default size based on the size of fine level index sf:
183     // (w-1) * sqrt(sf*(sf-N/(w-1))) / (2N)
184     if (ncoarse < 5U && offset64.back() > offset64[0]+(int32_t)(nrows/31U)) { 
185     ncoarse = sizeof(ibis::bitvector::word_t);
     const int wm1 = ncoarse*8-1;
...
199         ncoarse = ncmax;
200     }
201     }

下面看一个实际的例子,左侧是对 1-100 的数据列构造的 relic,右侧是基于该 relic 构造的 bylt:

bylt 索引

5.7 relic->fuzz

fuzz(定义于 irelic.h,实现于 ixfuzz.cpp)是two-level unbinned interval-equality 算法,即 fuge 的 unbinned 版本,名字起源于 fuzzy 聚类/分类。fuzz 索引分两层,第一层为 interval(mesa) 索引,第二层为 unbinned equality(relic) 索引,具体实现时 fastbit 也是采用首先构造 relic,然后构造 fuzz 的方式。其分组粒度可以由 ncoarse=x 指定,否则默认分组个数由下面算法确定:

ixfuzz.cpp:
168     // default size based on the size of fine level index sf: sf(w-1)/N/        sqrt(2) 
169     if (ncoarse < 5U && offset64.back() > offset64[0]+nrows/31U) {
170     ncoarse = sizeof(ibis::bitvector::word_t);
...
182     else {
183         ncoarse = ncmax;
184     }
185     }

下面看一个实际的例子,左侧是对 1-100 的数据列构造的 relic,右侧是基于该 relic 构造的 fuzz:

fuzz 索引

5.8 relic->zona

zona(定义于 irelic.h,实现于 ixzona.cpp)是 two-level unbinned equality-equality 算法,zona 是丹麦语的zone(binned 版本算法),其索引分两层,两层均为 unbinned equality(relic) 索引。首先构造 relic,然后对桶进行分组构造zona,分组个数默认为11个。下面看一个实际的例子,左侧是对 1-100 的数据列构造的 relic,右侧是基于该 relic 构造的 zona:

zona 索引

六、多成分 bitmap 索引

多成分(multi-component)bitmap 索引[3]是使用一组基数将数据值分解成多个部分,分别对每个部分进行 bitmap 索引的方案。原理描述如下:给定 n-1 个基数 { bn-1, bn-2, ..., b1},那么一个值 v 可以通过下式分解为 {vn, vn-1, ..., v1}:

数据值的分解

这和数的表示法类似,如果令 bi 都是 10,那么 vi 就是十进制表示法中第 i 位的值(大于等于0,小于10)。更准确的表述可以参考[3]。下面我们来看 fastbit 中的几个实现。

6.1 relic->fade

fade(定义于 irelic.h,实现于 ifade.cpp)是 multicomponent range-encoded 算法,即在每个部分中,是使用的 range 索引。下面来看一个 range-encoded 的例子:

fade 索引

在(b)图中,选择的基数是 9,那么索引就变成了一个单成分的 range 索引算法;在(c)图中,选择的基数是 <3, 3> 这样一个双成分编码,对分解出来的每个成分(大于等于0,小于3)生成 range 索引,就得出了 (c) 图中的结果。

6.2 relic->fade->sapid

sapid(定义于 irelic.h,实现于 isapid.cpp)是 multicomponent equality-encoded 算法,即在每个部分中是使用的 equality(relic) 索引。下面来看一个 equality-encoded 的例子:

sapid 索引

在(b)图中,选择的基数是 <3, 4> 这样一个双成分编码,对分解出来的每个成分生成 relic 索引,就得到了 (b) 图中的索引结果。

除了这两个索引算法之外,还有 sbiad(multicomponent interval-encoded),egale(multicomponent equality code on bins), entre(multicomponent interval code on bins), moins(multicomponent range code on bins)这几个索引算法。从括号中我们可以大致猜出这些索引的实现方式,但是由于我们现在没有一个很好的示例展现方式,用实际用例来展现这些索引算法的效果将会留给以后的文章进行。

七、总结

这篇文章基于 fastbit 软件包,加以实际的用例对常用的 bitmap 索引算法进行了一个较为系统的介绍。不过生成 bitmap 索引仅仅是第一步,bitmap 索引在存储时会有很大的开销,在不损害(较少损害)查询效率的情况下,对 bitmap 索引进行有效的压缩是一个非常有挑战性的课题。除了 bitmap 索引的生成和存储之外,在不同类型的 bitmap 索引上实现高效的各种类型的查询,也是一个值得进一步探讨的问题。我们很高兴地看到 fastbit 软件包实现了很多这些相关领域的算法,为我们提供了非常宝贵的资料。

参考文献

[1] C-Y. Chan and Y. E. Ioannidis, An efficient bitmap encoding scheme for selection queries, in Proceedings of the ACM international conference on Management of data (SIGMOD), 1999.
[2] P. O’Neil and DalIan Quass, Improved Query Performance with Variant Indexes, in Proceedings of the ACM international conference on Management of data (SIGMOD), 1997.
[3] C-Y. Chan and Y. E. Ioannidis, Bitmap Index Design and Evaluation, in Proceedings of the ACM international conference on Management of data (SIGMOD), 1998.

Math in CS:置换的轮换分解

随便一本《近世代数》或者《抽象代数》书上在讲到置换群的时候,应该都会讲到这样一个定理:
任何一个置换都可以表示为不相交轮换的乘积,若不计因子的顺序,其分解式是唯一的。

一、简单解释

没有数学背景的人,这句话很难读懂,下面我们来看一个简单的例子。假设我们有这样一个置换 P:

1, 2, 3, 4, 5
2, 5, 4, 3, 1

那么这个置换是什么样的轮换的乘积呢?我们先从 1 出发,1 被换到 2,2 被换到 5,5 又被换到 1,这就是一个轮换;然后再从 3 出发,3 被换到 4,4 又被换到 3,这又是一个轮换。也就是说 P 是两个不相交轮换 (1, 2, 5) 和 (3,4) 的乘积。

二、一个应用:全排列判断问题

下面我们来看这个定理有什么作用,考虑下面这道题目[1][2]:

给一个 n 长的数组,判断它是否为一个 1, 2, ..., n 的全排列,要求在线性时间,常数空间内实现。

我们可以容易看到,每个全排列都可以视为 1, 2, ..., n 上的一个置换。问题就转化为检测该数组是不是一个 1, 2, ..., n 的置换。由本文开头提到的定理可知,我们只需要检查该置换是不是由不相交的轮换构成的即可。

还是上面那个例子,怎么检查

1, 2, 3, 4, 5
2, 5, 4, 3, 1

是不是一个置换呢?首先从 1 开始,a[1]=2,那么再检查 a[a[1]]=a[2]=5,然后再检查a[a[a[1]]]=a[5]=1,这样就发现了一个轮换 (1, 2, 5)。然后接下来检测第二个,第三个轮换...

如何保证检查的高效以及所有轮换都不相交呢?我们每次检查完一个数,就将它置负,这样遇到负值,循环就终止了。如果终止前检查的那个数与起始的数相同,那么我们就发现了一个轮换,否则它就不是一个轮换,说明 P 不是一个置换。由于检查过的轮换中的数字都被置为负值,所以第二个轮换肯定不会与第一个轮换相交。如果到最后所有的数都被置为负值,且循环正常终止,那么说明它们都在不相交的轮换里,那么 P 就是一个置换。

如果想要查找过程不影响最终数组的值,到最后把所有置负的元素都重新置正即可。

代码实现如下[2]:

/* We use a n+1 elements array a[n+1] for convenience. a[0] is used to store
 * the return value, thus is not part of the permutation.  */
int test_perm(int *a, int n)
{
  int i, j;
  if (a == NULL)  return 0;     /* Test input */
  a[0] = 1;
  for (i = 1; i <= n; ++i)      /* Test input */
    if (a[i] < 1 || a[i] > n) { /* Is a[i] in the range 1~n? */
      a[0] = 0;
      return a[0];
    }

  for (i = 1; i <= n; ++i)
    if (a[i] > 0) {
      j = i;
      while (a[j] > 0) {        /* Follow the cycle */
        a[j] = -a[j];
        j = -a[j];
      }
      if (j != i)  a[0] = 0;    /* Test the cycle */
    }

  for (i = 1; i <= n; ++i)
    a[i] = a[i] > 0 ? a[i] : -a[i];

  return a[0];
}

三、另一个应用:100 囚徒碰运气问题

那么这个定理还有其它的用处没有呢?考虑下面这道题目[3][4]:

100 个囚犯,每人有一个从 1 到 100 的不重复不遗漏的号码,国王把这些号码收集起来,打乱放进 100 个箱子里,每个箱子里有且仅有一个号码。囚犯们一个一个地来到 100 个箱子面前,每人可以打开至多 50 个箱子来寻找自己的号码,可以一个一个打开(即可以根据之前箱子里看到的号码来决定后面要打开的箱子)。如果有一个囚犯没有找到自己的号码,那么这 100 个人一起被处死;只有当所有的囚犯都找到了自己的号码,他们才会被国王全部释放。

囚犯们可以在没开箱子前商量对策,但是一但打开了箱子,他就不能告诉别人箱子和号码的对应关系。问他们应该用什么样的策略以保证最大的存活概率?

显然,每个人随机选 50 个箱子打开,100 个人的存活概率会是 1/2 的 100 次方,即1/1267650600228229401496703205376,可以小到忽略不计。但是事实上有一种极简单的办法,其存活概率高达 30% 。至于有没有更好的办法?我不知道。

存活率达 30% 的策略就是:

囚犯打开自己号码对应的箱子,就按照箱子中的号码打开另一个箱子,一直到找到自己号码或者选50 次为止,这样就能保证整体有 30% 的存活概率。

这个策略背后的数学原理是什么呢?其实国王所作的事情,就是一个 1 到 100 元素集合的置换,囚犯所做的事情,就是顺着自己号码所在的轮换找自己号码。那么什么时候所有人都不用死呢?就是这个置换中所有的轮换长度都不大于 50,因为每个囚犯号码的轮换都不大于 50,那么他总能在 50 次以内找到自己的号码。

怎么计算这个概率 P 呢?{这个置换中所有的轮换长度都不大于 50 的概率},就是 1 - {存在轮换长度大于 50 的概率},进而 1 - {存在轮换长度为 51, 52, ..., 100 的概率},由此,我们可以得到下面的等式:

P=1-\frac{1}{100!}\sum_{k=51}^{100}\binom{100}{k}(k-1)!(100-k)!=1-\sum_{k=51}^{100}%20\frac{1}{k}=1-(H_{100}-H_{50})

其中,Hn 代表调和数(Harmonic Number)。虽然调和数没有精确的公式,但是我们知道调和数和自然对数有着密切的联系[5],那么我们就可以用自然对数来近似:

P\approx1-(ln(100)-ln(50))=1-ln(2)\approx0.30685281944005469059[6]

因此,我们可以得到,使用这种策略 100个囚犯的存活概率 P 约为 30%。

[1] http://yueweitang.org/bbs/topic/22
[2] http://fayaa.com/tiku/view/84/
[3] http://tydsh.spaces.live.com/Blog/cns!435F1A315756AD5D!833.entry
[4] http://fayaa.com/tiku/view/141/
[5] http://en.wikipedia.org/wiki/Harmonic_number#Calculation
[6] 求和得到的更精确的结果是:0.31182782068980479698,Bash 代码:

STR="1-("
for i in `seq 51 99`; do
  STR+="1/$i+"
done
STR+="1/100)"
echo $STR | bc -l

25 马问题

这是以前在 TopLanguage 讨论组讨论过的一道题目 ,题目描述为:

有 25 匹马和 1 个赛场,但赛场只有 5 条赛道,即一次只能给最多 5 匹马提供比赛机会,并且不能计时。请问如何设计比赛策略得到最快的 3/5 匹马,使得使用赛道的次数最少。

我想了一下,下面尝试给出我的分析,如果不对的话,还请指正。

一、决出前三名的策略

决出前 3 名网上有很多讨论,答案是 7 次,没有见过更少的,策略如下:

1. 将 25 匹马分成 5 组,分别赛一轮,得出一个先后顺序,共 5 轮。
2. 将每组的头马组成一组,再赛一轮,得出一个先后顺序。这第 6 轮能确定第一名。
3. 将最快一组的二三名,第二那组的一二名,以及第三那组的第一名五匹马放在一起,再赛一轮。这第 7 轮的前两名就是最终的二三名。总共赛 7 轮。

下面是分析。不失一般性,在赛 6 次之后,我们假设这 25 匹马的序号为:

A1 A2 A3 A4 A5  // 1 <-------
B1 B2 B3 B4 B5  // 2  |     |
C1 C2 C3 C4 C5  // 3 Main   |
D1 D2 D3 D4 D5  // 4  |  Extended
E1 E2 E3 E4 E5  // 5 <--    |
--------------  //          |
A1 B1 C1 D1 E1  // 6  {A1} <-

其中主矩阵列出了 25 匹马的序号,扩展矩阵的每行是每轮比赛的结果。我们可以看到主矩阵的行有序,第一列有序,那么现在我们知道第一名是 A1。

由于已知 A1 是第一名,第二名肯定是在每轮中紧挨在 A1 后面的,因此第二名的候选集为 {A2, B1}。

它们两个占不满 5 个赛道,我们再来看第三名的候选集。第三名在每轮中只可能是挨在第一或第二名的后面,也就是说在 {A1} U {A2, B1} 的后面,那么第三名的候选集就是 {A2, A3, B1, B2, C1},正好 5 匹马(第二名的候选集肯定包含在第三名候选集中)。那么第二三名只可能在这 5 匹马中,因此我们只需要让 {A2, A3, B1, B2, C1} 这 5 匹马再比一次,得到前两名,与 {A1} 合起来就是总的前三名。这样总共的比赛次数是 7 次。

2. 决出前五名的策略

决出前 5 名,就比较复杂了,我们按照同样策略再往下思考:

{A2, A3, B1, B2, C1} 决出前两名,有几种可能呢?如果它们没有比过,可能性就是从 5 个中取 2 个后的排列数,20 种可能。但是我们前面的比赛已经得到了一些快慢信息,我们就可以发现,第 7 轮 {A2, A3, B1, B2, C1} 决出前两名只有 5 种可能情况:

A2 A3 B1       B2/C1 * // 7  {A1, A2, A3}
B1 B2 A3/C1    *     * // 7  {A1, B1, B2}
B1 C1 A2/B2    *     * // 7  {A1, B1, C1}
A2 B1 A3/B2/C1 *     * // 7  {A1, A2, B1}
B1 A2 A3/B2/C1 *     *

去掉可交换的 A2 B1,其实只有 4 种情况。我们分别来考虑这 4 种情况:

1. {A1, A2, A3}

第四名肯定是 {A1, A2, A3} 之后的马,候选集为 {A4, B1};元素不足 5,再推一下第五名,即{A1, A2, A3} U {A4, B1} 之后的马,候选集为 {A4, B1, A5, B2, C1},只有 5 匹马。就是说第四、五名可以从这五匹马中产生,那么我们只需要再比一轮,取前两名,与 {A1, A2, A3} 并起来就能得到整个的前 5 匹马。那么最少的比赛次数是 8 次。

2. {A1, B1, B2}

这种情况下,同理,第四名候选集为 {A2, B3, C1} ,第五名候选集为 {A2, A3, B3, B4, C1, C2, D1},元素多于 5 个。因此我们必须先让 {A2, B3, C1} 比赛得到第 4 名,才能将第五名候选集的元素个数减少到 5 个以内。穷举:第 8 轮 A2 第一,可以消去 {C2, D1, B4, A2};B3 第一,可以消去 {B3, A3, C2, D1};C1 第一,可以消去 {C1, A3, B4},均能保证第五名的取值集合减少到 5 以内,因此只需要再一轮,就可以得到第五名。总的比赛次数是 9 次。

3. {A1, B1, C1}

同理,第四名候选集为 {A2, B2, C2, D1},第五名候选集为{A2, A3, B2, B3, C2, C3, D1, E1}。第四名无论取哪个,都会消去四个第五名候选集中的元素,总的比赛次数仍然是 9 次。

4. {A1, A2, B1}

同理,第四名候选集为{A3, B2, C1},第五名候选集为{A3, A4, B2, B3, C1, C2, D1}。第四名无论取哪个,至少消去第五名候选集中的 3 个元素,总的比赛次数也是 9 次。

穷举结束了,现在我们可以得出结论:最坏情况下该策略决出前 5 匹马的最少比赛次数是 9 次。

三、扩展问题

我有一个问题是:这种策略下取3, 5名比赛次数一定是最少的吗?有没有数学证明?

再扩展一点儿,如果需要求前 n 名,最少需要比赛几次?

在我们的这种策略下,因为主矩阵只有 5 行,每行还是有序的,那么求下一名的候选集最多有 5 个元素。也就是说多求一名,至多需要增加一轮比赛。什么情况下可以少于一轮呢?当已经确定第 n 名的情况时,第 n+2 名的候选集元素少于 5 个,我们就可以一轮比赛确定两个名次了。

我还比较好奇的是,如果需要决出所有 25 匹马的快慢顺序,最坏情况下至少需要比赛几次?

在我们这种策略下,假设 f(n) 是第 n 名最坏情况下的最少比赛次数,我们已知 f(1) = 6, f(2) = f (3) = 7, f(4) = 8, f(5) = 9,f(n) <= (n-5)+9 = n+4。那么 f(25) = f(20)+1 <= (20-5)+9 + 1 = 25 次,其上界应该是 25。但其准确值怎么确定?穷举就太困难了。 但是如果题目要求是确定 25 个的全部顺序,我们这种策略未必是最好的。这时候这题可以看成 n 路归并排序,并且可同时比较 n 个数的优化问题。过程中有很多可优化的可能。比如我们预处理时可以对每行和每列都排一下序,能否可以得到一些额外的信息?当主矩阵(去掉已确定顺序的元素)显得不那么平衡时,用扩展矩阵中的比较信息是否可以将主矩阵平衡一下,或者消去某些行列,这样做是否有帮助?

Cygwin GCC qsort 函数错误(续)

上一篇文章中提到我在为 qsort 写 compare 函数时犯了一个愚蠢的错误:我脑袋陷入了一个错误的逻辑,以为 compare 函数嘛,就是要 compare 一下,那么我用 '>' 或者 '< ' 这种比较算符就可以满足要求(潜意识里认为 > 会返回 1 或者 -1,显然是错的,上篇文章的评论者 Stephen 开始也犯了同样的直觉错误,不过他马上就醒悟过来了)。我当时脑袋里也犹豫了一下要不要处理相等的情况,后来想快排算法中没有判断相等的情况,那么我没必要加上等号。

这个错误直接导致了快排算法失效。

但是为什么在 Linux 下的 gcc 可以输出正确的排序结果呢?我想了很久,最终还是把 glibc 的代码看了一下,才发现,原来当数组规模比较小时时(数组大小小于物理内存的四分之一),glibc 的 qsort 其实不使用 quick sort(_quicksort),而是使用 merge sort(msort_with_tmp)。而且在 msort_with_tmp 中,对 compare 的处理是比较其返回值是否 <=0,这样排序的结果就是正确的了。[1]

事实上最简单的快排算法是只使用 '<' 号或者 '<='的,比如 Wikipedia 上给出的快排算法,那么我们的 compare 只返回 -1 和 0 行吗?这取决于实现,比如对快排算法的优化中有一个就是对数组中有大量相等元素情况下的优化,其中一种实现 Three-way partition, 就需要使用到三种情况:大于、小于或等于。原始的快排 partition 是将数组按照与 pivot 的比较分为两段,Three-way partition 则是将数组分为三段,中间增加一段与 pivot 值相等的子数组。C 玩具代码的实现如下:

void qsort_3way(int a[], int lo, int hi)
{
  if (hi <= lo) return;
  int lt = lo, gt = hi, i = lt;
  int v = a[lo], t;
  while (i <= gt) {
    if (a[i] < v) {
      t = a[i]; a[i] = a[lt]; a[lt] = t;
      ++i; ++lt;
    } else if (a[i] > v) {
      t = a[i]; a[i] = a[gt]; a[gt] = t;
      --gt;  
    } else i++;
  }
  qsort_3way(a, lo, lt - 1);
  qsort_3way(a, gt + 1, hi);
}

但是 '<' 和 '>' 真的都需要吗?理论上来讲,'>' 是不需要的,我们显然可以将 a[i] > v 改成 v < a[i]。这也是 C++ 里面做的,C++ 中的 sort 函数只需要类重载 '< ' 运算符。但是 C 中并没有这种约定,我们不能预设 qsort 如何拿 compare() 的返回值与 0 比较。因此让 compare() 按照 C 的约定,返回大于、小于和等于 0 的三种情况是绝对正确的而且必要的。

我了解了正确的结果怎么得来的,但是我仍然不知道错误的结果是怎么得来的。看起来 Cygwin 使用的 libc 中没有采取类似 Linux 下 gcc 的策略(比如无法取到物理内存大小?)。quick sort 算法有很多优化的技巧和实现:有的使用 '< ' 符号比较,有的在分支数组足够小时采用插入排序,有的同时使用 '<', '> 两个符号,有的随机取 pivot,有的取三点中值作为 pivot。[2] 没有看到代码和调试,很难判断 Cygwin 的 libc 使用了什么算法(当然,尝试分析不同的输入输出是可以得到规律的,比密码分析还是要简单一些)。

[1] glibc/stdlib/msort.c.
[2] Jon Bentley and M. Douglas McIlroy, "Engineering a sort function", Software - Practice and Experience, Vol. 23 (11), 1249-1265, 1993.

统计二进制中 1 的个数

这是一道《编程之美-微软技术面试心得》中的题目,问题描述如下:

对于一个字节(8bit)的变量,求其二进制表示中“1”的个数,要求算法的执行效率尽可能地高。

《编程之美》中给出了五种解法,但是实际上从 Wikipedia 上我们可以找到更优的算法

这道题的本质相当于求二进制数的 Hamming 权重,或者说是该二进制数与 0 的 Hamming 距离,这两个概念在信息论和编码理论中是相当有名的。在二进制的情况下,它们也经常被叫做 population count 或者 popcount 问题,比如 gcc 中就提供了一个内建函数:

int __builtin_popcount (unsigned int x)

输出整型数二进制中 1 的个数。但是 GCC 的 __builtin_popcount 的实现主要是基于查表法做的,跟编程之美中解法 5 是一样的。Wikipedia 上的解法是基于分治法来做的,构造非常巧妙,通过有限次简单地算术运算就能求得结果,特别适合那些受存储空间限制的算法中使用:

/* ===========================================================================
* Problem:
*   The fastest way to count how many 1s in a 32-bits integer.
*
* Algorithm:
*   The problem equals to calculate the Hamming weight of a 32-bits integer,
*   or the Hamming distance between a 32-bits integer and 0. In binary cases,
*   it is also called the population count, or popcount.[1]
*
*   The best solution known are based on adding counts in a tree pattern
*   (divide and conquer). Due to space limit, here is an example for a
*   8-bits binary number A=01101100:[1]
* | Expression            | Binary   | Decimal | Comment                    |
* | A                     | 01101100 |         | the original number        |
* | B = A & 01010101      | 01000100 | 1,0,1,0 | every other bit from A     |
* | C = (A>>1) & 01010101 | 00010100 | 0,1,1,0 | remaining bits from A      |
* | D = B + C             | 01011000 | 1,1,2,0 | # of 1s in each 2-bit of A |
* | E = D & 00110011      | 00010000 | 1,0     | every other count from D   |
* | F = (D>>2) & 00110011 | 00010010 | 1,2     | remaining counts from D    |
* | G = E + F             | 00100010 | 2,2     | # of 1s in each 4-bit of A |
* | H = G & 00001111      | 00000010 | 2       | every other count from G   |
* | I = (G>>4) & 00001111 | 00000010 | 2       | remaining counts from G    |
* | J = H + I             | 00000100 | 4       | No. of 1s in A             |
* Hence A have 4 1s.
*
* [1] http://en.wikipedia.org/wiki/Hamming_weight
*
* ===========================================================================
*/
#include <stdio.h>

typedef unsigned int UINT32;
const UINT32 m1  = 0x55555555// 01010101010101010101010101010101
const UINT32 m2  = 0x33333333// 00110011001100110011001100110011
const UINT32 m4  = 0x0f0f0f0f// 00001111000011110000111100001111
const UINT32 m8  = 0x00ff00ff// 00000000111111110000000011111111
const UINT32 m16 = 0x0000ffff// 00000000000000001111111111111111
const UINT32 h01 = 0x01010101// the sum of 256 to the power of 0, 1, 2, 3

/* This is a naive implementation, shown for comparison, and to help in
* understanding the better functions. It uses 20 arithmetic operations
* (shift, add, and). */
int popcount_1(UINT32 x)
{
  x = (x & m1) + ((x >> 1) & m1);
  x = (x & m2) + ((x >> 2) & m2);
  x = (x & m4) + ((x >> 4) & m4);
  x = (x & m8) + ((x >> 8) & m8);
  x = (x & m16) + ((x >> 16) & m16);
  return x;
}

/* This uses fewer arithmetic operations than any other known implementation
* on machines with slow multiplication. It uses 15 arithmetic operations. */
int popcount_2(UINT32 x)
{
  x -= (x >> 1) & m1;             //put count of each 2 bits into those 2 bits
  x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
  x = (x + (x >> 4)) & m4;        //put count of each 8 bits into those 8 bits
  x += x >> 8;           //put count of each 16 bits into their lowest 8 bits
  x += x >> 16;          //put count of each 32 bits into their lowest 8 bits
  return x & 0x1f;
}

/* This uses fewer arithmetic operations than any other known implementation
* on machines with fast multiplication. It uses 12 arithmetic operations,
* one of which is a multiply. */
int popcount_3(UINT32 x)
{
  x -= (x >> 1) & m1;             //put count of each 2 bits into those 2 bits
  x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
  x = (x + (x >> 4)) & m4;        //put count of each 8 bits into those 8 bits
  return (x * h01) >> 24// left 8 bits of x + (x<<8) + (x<<16) + (x<<24)
}

int main()
{
  int i = 0x1ff12ee2;
  printf("i = %d = 0x%xn", i, i);
  printf("popcount_1(%d) = %dn", i, popcount_1(i));
  printf("popcount_2(%d) = %dn", i, popcount_2(i));
  printf("popcount_3(%d) = %dn", i, popcount_3(i));
  /* If compiled with other compiler than gcc, comment the line bellow. */
  printf("GCC's  __builtin_popcount(%d) = %dn", i,  __builtin_popcount(i));
  return 0;
}

从一个数列中取具有最小和的子序列

问题描述:给定一个含有 n 个元素的数列,元素有正有负,找出和最小的一组相邻的数。即给定 a[n],求 i,j 使得 a[i] + a[i+1] + ...+ a[j] 的和最小。

这个问题1并不难,但是我在想这个问题时经历了比较有趣的思考过程,写下来给大家分享一下。

其实这道题主要考察的是问题转换(或者说是抽象?)的能力,即如何将一个看似复杂的问题转换成一个简单的问题。直接求一个连续子列的和看起来很麻烦,我们要考虑 i 和 j 的取值,然后把子列中的元素加起来。但是换一个角度,一个连续子列的和可以看成是两个前缀和相减,比如:a[i] + a[i+1] + ...+ a[j] 实际上就等于 s[j] - s[i-1],其中 s[k] = a[0] + a[1] + ... + a[k]。这在高等数学中也是会被经常用到的方法。

所以我们要做的就是

计算出前缀和序列 s[n],并找出最小的 s[j] - s[i],其中 j>i,且 j,i 属于 {0,1,...,n}。

如果不要求 j>i,那么答案很简单,s[n] 中最小值减去最大值就是结果。但既然要求了 j>i,就不能这样做了,因为最小值的位置未必在最大值后面。最显而易见的方法就是遍历了:

J = 1; I = 0;
for (i=0; i<n; i++) {
  for (j=i+1; j<n; j++) {
    if (s[j] - s[i] < s[J] - s[I]) {
      I = i; J = j;
    }
  }
}

但是这个算法很耗时,两层嵌套,等差数列求和,复杂度肯定是 O(n2)。观察一下数列的规律我们可以发现,如果 s[i] < s[I] 的话,我们就没有必要计算 s[j] - s[i],因为结果肯定比 s[j] - s[I] 大嘛,同理可以用于 s[j] > s[J] 的情况,这样呢,我们可以稍微优化一点儿:

J = 1; I = 0;
for (i=0; i<n; i++) {
  if (s[i] < s[I]) continue;
  for (j=i+1; j<n; j++) {
    if (s[j] > s[J]) continue;
    if (s[j] - s[i] < s[J] - s[I]) {
      I = i; J = j;
    }
  }
}

但是这个优化作用到底有多大?我没有仔细计算,是比第一种情况快了一点儿,但最显著的速度提升还是在于第一层循环中,那样就能减少 n-i+1 次计算,在最坏的情况下仍然是 O(n2)。所以我觉得仍然不够,不就求一个最小值嘛,为什么那么慢呢,肯定是因为我笨。于是我就在 BBS 求助了一下别人,果然有人给出更快的算法:

J = 1; I = 0; max = 0;
for (i=1; i<n; i++) {
  if (s[i]-s[max] < s[J]-s[I]) {
    I = max;  J = i;
  }
  max = s[i] > s[I] ? i : max;
}

这个算法的思想是: s[I] 肯定是 s[J] 之前最大的数,s[J] 也是 s[I] 之后最小的数,那么保留到目前为止最大的数 s[max],用当前数 s[i] 去减它(肯定是小于 s[i] - s[I] 的),看它是否小于 s[J] - s[I],如果是的话,那么 s[i] -s[max] 就是到 i 为止最小的差值对。扫描一遍 s[n] 就能得到结果,O(n)!

后来我发现在 Jon Bentley 的《编程珠玑》第二版第8章讨论了这个问题1(只不过是讨论的最大值),在该章最后提出的算法4中,仅仅使用了与上面算法相同的扫描方法,而没有使用累加操作。虽然上面算法复杂度与算法 4 相同,但算法 4 复杂度中 n 的系数要小一些,下面是算法 4 的 C 语言实现:

int i = 0, I = 0, J = 0, I_end = 0;
int max_end = 0, max_sofar = 0;
for (i=0; i<len; i++) {
  max_end += a[i];
  if (max_end > 0) {
    max_end = 0; I_end = i;
  }
  if (max_sofar > max_end) {
    max_sofar = max_end;
    I = I_end; J = i;
  }
}

[1] 2008年1月15日注:这个问题出现在《Programming Pearls》第二版的 Column 8,Jon Bentley 对该问题的起源和算法发展做了非常详致的分析。

用两个非门和任意的与、或门构造三个非门

计算机科学中有很多有趣的 puzzle,他们可能出现在那些自命清高的企业的笔试题中,也可能来源于在网路上不经意的一瞥。后者比如我在无意中访问到的 Jamie Zawinski 的个人主页:http://www.jwz.org/,他即是在著名的 Teach Yourself Programming in Ten Years 一文中,Peter Norvig 提到的那位:

One of the best programmers I ever hired had only a High School degree; he's produced a lot of great software, has his own news group, and made enough in stock options to buy his own nightclub.

Jamie Zawinski 的个人主页看起来就像是 hexdump 的结果,而且以某种规律变化着,比较奇怪的是其中埋藏的一些超级链接并不发生变化。Jamie Zawinski 在网页的源代码中这样写道:

<!-- mail me if you find the secret -->
<!--   (no, you can't have a hint)  -->

我徒劳无功地搜索了一下,没有找到任何明确的解答。如果您通过我这篇文章了解到这个 puzzle,并且解答了它的话,非常希望您也 mail 给我一份解答。

说了那么多,其实本文的主题 puzzle 却是来源于前者。这个问题更详细的阐述是:

假设有一个逻辑黑盒,三个布尔型变量 x, y, z 作为输入,输出三个布尔变量 X, Y, Z,其中:
X = ~x; Y = ~y; Z = ~z;
注意,~ 符号代表一个非门。请用两个非门和任意多个与、或门实现这个黑盒。

这个问题大概是在计算机硬件设计中提出来的,所以看起来貌似很“电子”,但是其基础却是计算机科学中的布尔代数运算。下面代码的注释中已经包含详细的算法和分析,这里我就不再解释了。(当然,这个问题的答案不是我想出来的,我只是实现并分析了一下,作为我算法学习的笔记记录在此。)

/* ===========================================================================

* Problem:
*   Construct 3 NOT gates from only 2 NOT gates(and *no* XOR gates).
*
*   Assume that a logical blackbox has three Boolean inputs x, y, z and
*   three Boolean outputs X, Y, Z where the outputs are defined as:
*     X = ~x
*     Y = ~y
*     Z = ~z
*   Note that ~ stands for a NOT gate. Please realize this blackbox using
*   only two NOT gates, and as many as possible AND and OR gates.
*
* Algorithm I:
*   Internal Nodes:
*   r = (x & y) | (x & z) | (y & z);
*   R = ~r;
*   s = (R & (x | y | z)) | (x & y & z);
*   S = ~s;
*
*   Equations for Outputs:
*   X = (R & S) | (R & s & (y | z)) | (r & S & (y & z));
*   Y = (R & S) | (R & s & (x | z)) | (r & S & (x & z));
*   Z = (R & S) | (R & s & (x | y)) | (r & S & (x & y));
*
* Analysis I:
*   We create 4 internal signals first: r, R, s and S. What equations above
*   say is that signal `r' will be 1 if two or three of the inputs are 1.
*   Meanwhile, signal `s' will be 1 if only one input is 1 or if all three
*   inputs are 1. The end result is that the two-bit word formed from `r'
*   and `s' tells us how many 1's we have[1]:
*   | r s | Means  |    | x y z | r s |    | x y z | r s |
*   |++++++++++++++|    |+++++++++++++|    |+++++++++++++|
*   | 0 0 | 0 Ones |    | 0 0 0 | 0 0 |    | 1 0 0 | 0 1 |
*   | 0 1 | 1 One  |    | 0 0 1 | 0 1 |    | 1 0 1 | 1 0 |
*   | 1 0 | 2 Ones |    | 0 1 0 | 0 1 |    | 1 1 0 | 1 0 |
*   | 1 1 | 3 Ones |    | 0 1 1 | 1 0 |    | 1 1 1 | 1 1 |
*
*   Thus now that we have the signals r and s (and their inverse
*   counterparts R and S), it's easy to construct any Boolean function of
*   x, y, and z, using only AND and OR gates:
*     X = (R & S) | (R & s & (y | z)) | (r & S & (y & z))
*   Proof:
*    1> x, y, z are all 0s, (R & S) = ~(r | s) = 1, obviously X=Y=Z=1, X = ~x;
*    2> (x, y, z) has at least one 1, R & S = 0, will be ignored, hence we
*       have:
*         X = (R & s & (y | z)) | (r & S & (y & z))
*    2.1> (x, y, z) has two or three 1s, R = ~r = 0, (R & s & (y | z)) = 0,
*         will be ignored, then we get:
*           X = S & (y & z)
*    2.1.1> (x, y, z) has three 1s, S = ~s = 0, obviously X=Y=Z=0, X = ~x;
*    2.1.2> (x, y, z) has two 1s, S = ~s = 1, will be ignored, hence we have:
*             X = y & z
*    2.1.2.1> (y, z) has one 1, x = 1, X = y & z = 1 & 0 = 0, X = ~x;
*    2.1.2.2> (y, z) has two 1s, x = 0, X = y & z = 1 & 1 = 1, X = ~x;
*    2.2> (x, y, z) has one 1, r = 0, (r & S & (y & z)) = 0, will be ignored,
*         we have:
*           X = y | z
*    2.2.1> (y, z) has one 1, x = 0, X = y | z = 1 | 0 = 1, X = ~x;
*    2.2.2> (y, z) has no 1s, x = 1, X = y | z = 0 | 0 = 0, X = ~x.
*    In conclusion, X = ~x for all cases.
*   QED.
*
* Algorithm II:
*   Internal Nodes:
*   _2or3_1s = ((x & y) | (x & z) | (y & z));
*   _0or1_1s = !(_2or3_1s);
*   _1_1     = _0or1_1s & (x | y | z);
*   _1or3_1s = _1_1 | (x & y & z);
*   _0or2_1s = !(_1or3_1s);
*   _0_1s    = _0or2_1s & _0or1_1s;
*   _2_1s    = _0or2_1s & _2or3_1s;
*
*   Equations for Outputs:
*   X = _0_1s | (_1_1 & (y | z)) | (_2_1s & (y & z));
*   Y = _0_1s | (_1_1 & (x | z)) | (_2_1s & (x & z));
*   Z = _0_1s | (_1_1 & (x | y)) | (_2_1s & (x & y));
*
* Analysis II:
*   Almost the same as Analysis I.
*
* [1] http://www.edadesignline.com/howto/191600992
* ===========================================================================
*/

#include <stdio.h>

typedef unsigned int BOOL;

int main()
{
  int i, fail;
  BOOL x, y, z, X, Y, Z;
  BOOL r, R, s, S;
  BOOL _2or3_1s, _0or1_1s, _1_1,  _1or3_1s, _0or2_1s, _0_1s, _2_1s;

  /* ==================== Algorithm I ==================== */
  printf("Algorithm I:n");
  fail = 0;
  for (i=0; i<8; i++) {
    /* Init x, y, z. */
    x = i & 1;
    y = (i>>1) & 1;
    z = (i>>2) & 1;
    /* Internal nodes. */
    r = (x & y) | (x & z) | (y & z);
    //R = !r;                               /* #1 NOT gate. */
    R = ~r & 1;                             /* #1 NOT gate. */
    s = (R & (x | y | z)) | (x & y & z);
    //S = !s;                               /* #2 NOT gate. */
    S = ~s & 1;                             /* #2 NOT gate. */
    /* Output. */
    X = (R & S) | (R & s & (y | z)) | (r & S & (y & z));
    Y = (R & S) | (R & s & (x | z)) | (r & S & (x & z));
    Z = (R & S) | (R & s & (x | y)) | (r & S & (x & y));

    if ((x == X) | (y == Y) | (z == Z)){
      fail ++;
      printf("FAIL: ");
    } else {
      printf("PASS: ");
    }
    printf("xyz = %u%u%u, XYZ = %u%u%un", x, y, z, X, Y, Z);
  }
  if (fail != 0) {
    printf("%d TEST FAILED!n", fail);
  } else if (!fail) {
    printf("ALL TEST PASSED!n");
  }

  /* ==================== Algorithm II ==================== */
  printf("Algorithm II:n");
  fail = 0;
  for (i=0; i<8; i++) {
    /* Init x, y, z. */
    x = i & 1;
    y = (i>>1) & 1;
    z = (i>>2) & 1;
    /* Internal nodes. */
    _2or3_1s = ((x & y) | (x & z) | (y & z));
    //_0or1_1s = !(_2or3_1s);               /* #1 NOT gate. */
    _0or1_1s = ~(_2or3_1s) & 1;             /* #1 NOT gate. */
    _1_1     = _0or1_1s & (x | y | z);
    _1or3_1s = _1_1 | (x & y & z);
    //_0or2_1s = !(_1or3_1s);               /* #2 NOT gate. */
    _0or2_1s = ~(_1or3_1s) & 1;             /* #2 NOT gate. */
    _0_1s    = _0or2_1s & _0or1_1s;
    _2_1s    = _0or2_1s & _2or3_1s;
    /* Output. */
    X = _0_1s | (_1_1 & (y | z)) | (_2_1s & (y & z));
    Y = _0_1s | (_1_1 & (x | z)) | (_2_1s & (x & z));
    Z = _0_1s | (_1_1 & (x | y)) | (_2_1s & (x & y));

    if ((x == X) | (y == Y) | (z == Z)){
      fail ++;
      printf("FAIL: ");
    } else {
      printf("PASS: ");
    }
    printf("xyz = %u%u%u, XYZ = %u%u%un", x, y, z, X, Y, Z);
  }
  if (fail != 0) {
    printf("%d TEST FAILED!n", fail);
  } else if (!fail) {
    printf("ALL TEST PASSED!n");
  }
  return 0;
}

薄弱的算法基础

这几日复习累时,翻出来 MIT 的《算法导论》课程录像来看,发现一个非常沮丧的事实:我对算法知道的真少。

仅仅看了 3 节课,就听到了几个我不懂的东西。比如计算递归算法复杂度的 master method,计算 Fibonacci 数列的复杂度为 θ(lg(n)) 的算法,计算矩阵相乘的复杂度为 θ(nlog2(7)) 的 Strassen 算法。这些东西我以前都没听说过,真是孤陋寡闻啊!

那本《算法导论》大概在我的书架上已经摆了两年了,两年我仅仅看了六七十页。我太懒是最主要的原因,但还有一个原因是从头开始看激发不了兴趣,前面讲的一些算法都是数据结构书上看过的东西,不是很有吸引力,看着看着就觉得索然无味,扔一边了。

不过我也从来没自诩过算法好,逛 BBS 时我主要在电脑技术版转,在其它的版都敢指手画脚一番,唯有在算法版老老实实潜水。计算机科学就是这样,知识层次不如别人,那就根本插不上话。这也是我极少在 pongba 兄的 TopLanguage 讨论组发言的一个原因,因为里面我感兴趣的话题主要是算法相关,而算法问题我又插不上嘴,只好默默潜水。

我的算法知识,大概仅限于我现在都不知道扔哪儿的一本《数据结构》书了。不是科班出身,也没正儿八经听过算法课,所以现在就有系统地学习算法知识的打算了,把存在电脑里好久的算法导论视频翻了出来。Charles Leiserson 讲的很不错,单就趣味性来说,《算法导论》的课程录像可比书要有意思多了。我想在最近的这段时间里,我应该至少能把录像看完。

另外,我在博客分类里添加了 Algorithm 一项,我将看看,在过一段日子后,我对算法的使用和理解能力能否有一些提高。